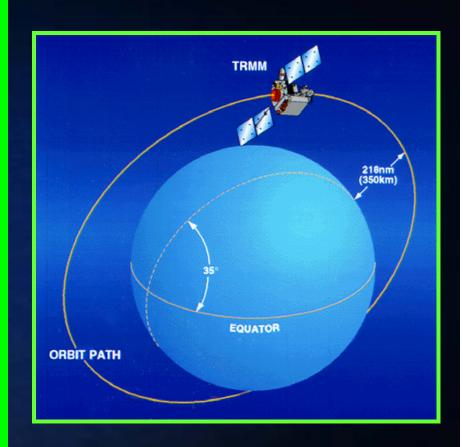


Next Generation High Power Dual-Frequency Transmitter For Space Borne and/or Air Borne Doppler Radar Precipitation Measurements


Stephanie Vasicek - NASA Academy Research Associate,
Ohio Wesleyan University, Delaware OH
Stephen Nawrocki - L.E.R.C.I.P. Research Associate,
The Ohio State University, Columbus OH
Edwin Wintucky - Principal Investigator, NASA Glenn
Research Center, Cleveland OH

Background

- ◆ Tropical Rainfall Measuring Mission: Only current U.S. satellite based precipitation measurement radar, launched in 1997, operates at a single Kuband frequency of 13.8GHz.
- - intensity, variability, and spatial distribution of rainfall
 - rain type
 - storm depth
 - other essential weather data



TRMM Limitations

- ◆ Limited in measurements of precipitation in the hydrologic cycle and accurate rainfall estimations
- Limited view of Earth
 (ranging from 36° N to 36° S)
- Samples rain relatively infrequently
- Cannot measure frozen precipitation
- Insensitive to light rainfall
- Passes over same location approx. once a day

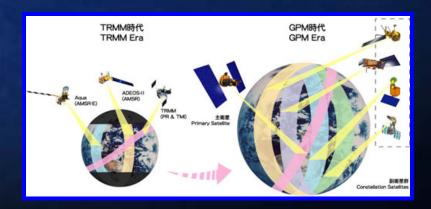
Global Precipitation Measurement

- ◆ Global Precipitation Measurement (GPM): dual-frequency radar system operated at both Ku-band (13.8GHz) and Ka-band (35.6GHz).
- ◆ The GPM would require two TWTAs with possibly two antennas.

The Core:

- ♦ GPM Microwave Imager (GMI)
- Dual Frequency Precipitation Radar (DFPR)

Constellation system

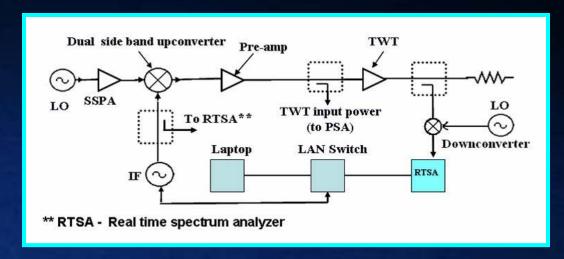


GPM Advantages

GPM is designed to account for downfalls of TRMM

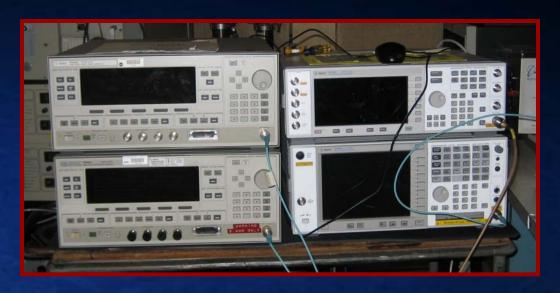
- More detailed observations of rainfall processes
- Significantly more accurate rainfall measurements
- Superior estimates of drop size and distribution (dual-frequency)
- Higher latitudes
- More understanding of global hydrological cycle
- Estimate various sizes of precipitation
- ◆ Difference between snow and rain
- ◆ 3-hour avg. revisit time over 80% of Earth
- Data available within 3 hours of observing

Our Research


- ◆ Dr. R. Meneghini at NASA GSFC showed the possibility of an approach using only a single transmitter and smaller antenna.
 - Same increased accuracy
 - pulsed radar system
 - two Ka-band frequencies 7-10% apart
 - ♦ Reduces size, mass and electrical power required for the system
- ◆ Testing feasibility of operating a single TWTA to amplify pulses at two Ka-band frequencies

Circuit Diagram

- ◆ FM modulated pulse (linear FM chirp) at 1.75GHz (IF) mixes with LO signal in dual side band upconverter
- ♦ RF output is LO±IF
- ♦ RF signals sent through TWT
- ◆ Downconverter mixes two RF frequencies with a second LO frequency to obtain two IF frequencies that are within range of RTSA (3GHz max)
- ◆ Both IF signals looked at separately using RTSA to compare modulated pulses before and after TWT


Stephen's Work

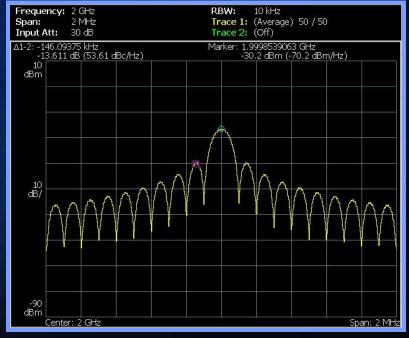
- Assisted in the collection of data
- Learned how to use more complex functions of analysis equipment for more accurate analysis of data
- Helped narrow the choice of pulse bandwidth and length that are useful in our test setup (RTSA limitation)
- Characterized various circuit components (filters, cables, etc.) and modified the circuit as needed for different types of data collection

Equipment

Stephanie's Work

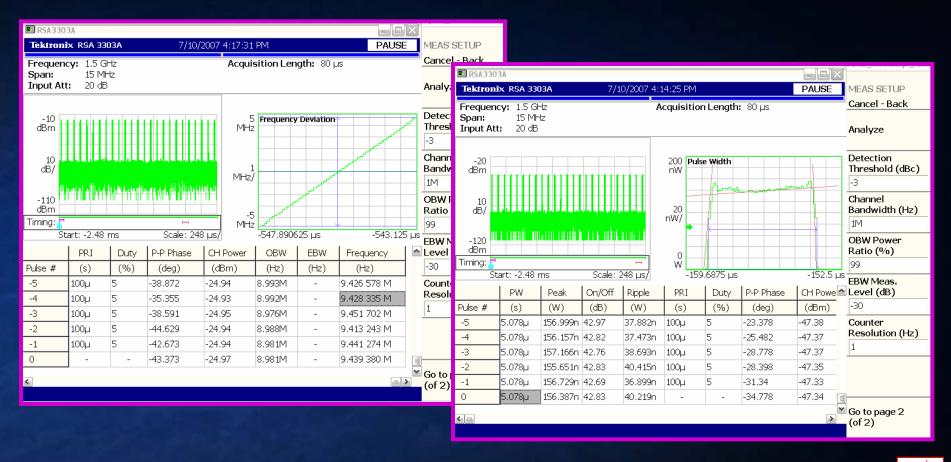
- Assisted in pulse analysis
- Explored applicability of new software for data analysis
 - MATLAB

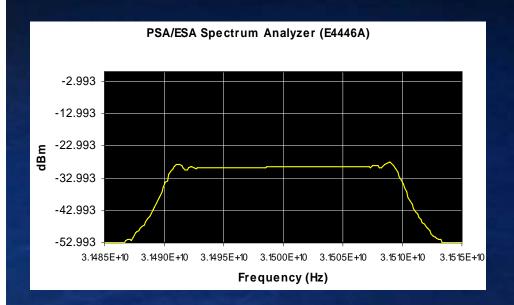
 - Agilent
- PowerPoint movies to demonstrate pulse-topulse changes in waveform

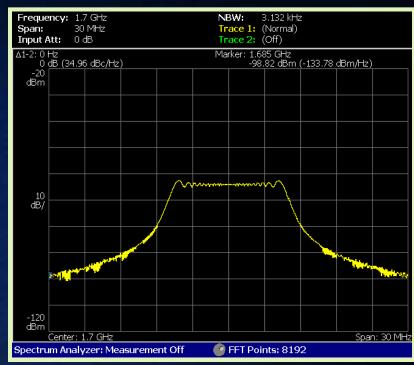


Methods of Analyzing Data

- The Tektronix RTSA
 offers the method we are using
 of viewing pulses in the time
 domain, although it is limited to a
 pulse bandwidth of 15 MHz in
 real time
 - Most analysis to date is semiquantitative, we are looking into methods to enable more detailed quantitative comparisons
- Vector Signal Analysis (VSA) software from Agilent for use with our Performance Spectrum Analyzer (PSA) to observe the modulated signals at Ka-band in the time domain
 - MATLAB Signal Processing Toolbox is a possible analysis tool

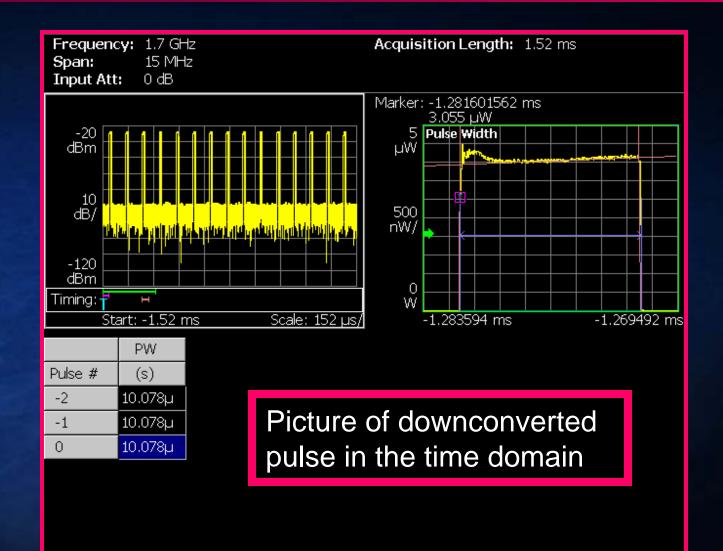



Pulse Analysis Results



Spectrum Analyzer Results

Modulated pulse prior to downconversion in frequency domain



Downconverted pulse in the frequency domain

Spectrum Analyzer Results



Results

Other RTSA display modes

Current and Future Work

- Current work
 - Investigate effect of TWT phase modulation on CW signal using single frequency
 - Investigate distortion effects of TWT on pulse waveform and phase using single frequency
 - Look into new filtering techniques to minimize intermodulation products
- Possible alternative approach staggered instead of simultaneous pulses
- Benefits of staggered pulses
 - Full peak power at each frequency
 - Avoid intermodulation products

Current and Future Work

- Refine ability to evaluate radar pulse modulations (FM chirp)
- Compare GRC findings to GSFC calculations

References

Wintucky, Edwin G., and Rainee N. Simons. Next Generation High Power Multi-Frequency
Transmitter for Space Borne Doppler Radar
Sensing and Precipitation Measurements. NASA
Glenn Research Center. 2007. 1-4.

"TRMM Tropical Rainfall Measuring Mission." 22 Jan. 2003. NASA. 1 Aug. 2007 http://kids.earth.nasa.gov/trmm/index.html.

"Global Precipitaiton Measurement." <u>NASA</u>. Goddard Space Flight Center. 7 July 2007 http://gpm.gsfc.nasa.gov/index.html.

Special Thanks

Edwin Wintucky
Stephen Nawrocki
Rainee Simons
RCE Branch
2007 NASA Academy at Glenn
Dr. David Kankam
Ohio Space Grant Consortium

